7 research outputs found

    Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network

    Get PDF
    The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm to solve constraint optimization problem. The core motivation of this paper is to introduce Hopfield network incorporated with genetic algorithm in solving MAX-kSAT problem. Genetic algorithm will be integrated with Hopfield network as a single network. The proposed method will be compared with the conventional Hopfield network. The results demonstrate that Hopfield network with genetic algorithm outperforms conventional Hopfield networks. Furthermore, the outcome had provided a solid evidence of the robustness of our proposed algorithms to be used in other satisfiability problem

    Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability

    Get PDF
    Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous computational and combinatorial optimization problems. In this paper, we introduce the restricted MAX-kSAT as a constraint optimization problem that can be solved by a robust computational technique. Hence, we will implement the artificial immune system algorithm incorporated with the Hopfield neural network to solve the restricted MAX-kSAT problem. The proposed paradigm will be compared with the traditional method, Brute force search algorithm integrated with Hopfield neural network. The results demonstrate that the artificial immune system integrated with Hopfield network outperforms the conventional Hopfield network in solving restricted MAX-kSAT. All in all, the result has provided a concrete evidence of the effectiveness of our proposed paradigm to be applied in other constraint optimization problem. The work presented here has many profound implications for future studies to counter the variety of satisfiability problem

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Robust Artificial Immune System in the Hopfield network for Maximum k-Satisfiability

    No full text
    Artificial Immune System (AIS) algorithm is a novel and vibrant computational paradigm, enthused by the biological immune system. Over the last few years, the artificial immune system has been sprouting to solve numerous computational and combinatorial optimization problems. In this paper, we introduce the restricted MAX-kSAT as a constraint optimization problem that can be solved by a robust computational technique. Hence, we will implement the artificial immune system algorithm incorporated with the Hopfield neural network to solve the restricted MAX-kSAT problem. The proposed paradigm will be compared with the traditional method, Brute force search algorithm integrated with Hopfield neural network. The results demonstrate that the artificial immune system integrated with Hopfield network outperforms the conventional Hopfield network in solving restricted MAX-kSAT. All in all, the result has provided a concrete evidence of the effectiveness of our proposed paradigm to be applied in other constraint optimization problem. The work presented here has many profound implications for future studies to counter the variety of satisfiability problem

    Genetic Algorithm for Restricted Maximum k-Satisfiability in the Hopfield Network

    No full text
    The restricted Maximum k-Satisfiability MAX- kSAT is an enhanced Boolean satisfiability counterpart that has attracted numerous amount of research. Genetic algorithm has been the prominent optimization heuristic algorithm to solve constraint optimization problem. The core motivation of this paper is to introduce Hopfield network incorporated with genetic algorithm in solving MAX-kSAT problem. Genetic algorithm will be integrated with Hopfield network as a single network. The proposed method will be compared with the conventional Hopfield network. The results demonstrate that Hopfield network with genetic algorithm outperforms conventional Hopfield networks. Furthermore, the outcome had provided a solid evidence of the robustness of our proposed algorithms to be used in other satisfiability problem

    Phylogenetic classification of the world's tropical forests

    No full text
    corecore